Physics Tutorial 2: Numerical Integration

Summary

The concept of numerically solving differential equations is explained, and applied to real time gaming
simulation. Some objects are moved in a 3D space using numerical integration to resolve simple
Newtonian mechanics in an iterative manner.

New Concepts

Integration Revision, Numerical Integration, Euler and Verlet Methods, Force-Based Physics Engine,
Damping

Introduction

A physics engine needs to move items around the environment in a believable manner. The first
tutorial in this series included a reminder of Newtonian mechanics, and described their relevance to
real-time game simulation. This tutorial discusses how that simulation is achieved through implemen-
tation of a number of iterative techniques for resolving differential equations numerically.

The physics engine which we are developing is based around resolving the forces acting on a body,
and calculating the acceleration instigated by the resultant force at every time-step of the simulation.
From this acceleration, the velocity can then be calculated, which in turn allows the calculation of
the position of the object for each frame of the game. The first tutorial described how multiple forces
on an object are resolved, and showed that the relationship between force and acceleration is propor-
tional according to Newton’s second law of motion. In this tutorial we discuss how to translate an
acceleration into a position in world space using integration.

We will first remind ourselves of what is meant by integration, and discuss why this is relevant to
gaming simulation. We then look at a few techniques for implementing numerical integration.

Integration

As you will recall from school, integration is a major part of calculus, which allows us to mathemati-
cally describe the relationship between variables in terms of their rate of change.

Probably the most intuitive way to introduce integration is to talk more specifically about the
relationship between acceleration, velocity and displacement — this is especially appropriate in the
context of developing a physics engine for games, as these are the parameters in which we are inter-
ested. Note the use of the words displacement and wvelocity here, rather than distance and speed.
This is because we are describing three-dimensional vectors, rather than one-dimensional scalars, as
discussed in the previous tutorial.

Velocity v is the rate of change of displacement s over time, and acceleration a is the rate of change
of velocity over time. In equation form, this is written as:

)l
Todt
.
Tdt

Conversely, velocity is the integral of acceleration over time, and displacement is the integral of velocity

over time:
v = /adt

s:/vdt

The graphs in Figure 1 show the relationship between displacement, velocity and acceleration for
a body which accelerates smoothly from rest, then moves at a constant velocity, then decelerates
smoothly back to being stationary.

Acceleration I I

I
| I I I
| | | | I

0 | I | | 0
[| [I
[| [I
I [[I
Velocity I I I I
| | | | |

D | | | 0
| I | I : !
| | | I |
| I | I I I
Displagement I | I I I
| | | I |

o ! l | I I I o

Figure 1: Relationship between acceleration, velocity and displacement

The first graph shows the acceleration, which is a series of discrete values — for the first segment
there is no acceleration, then during the second there is a constant acceleration, during the third
there is no acceleration, then the fourth has constant negative acceleration (i.e. deceleration), and
the fifth again has zero acceleration. The second graph shows how this is translated into the velocity
of the object — during the first segment with zero acceleration the velocity remains at zero, in the
second portion with constant acceleration the velocity increases linearly, the third segment has zero

acceleration so the velocity remains constant, in the fourth the velocity decreases linearly due to a
constant deceleration, and the fifth segment maintains a constant velocity as acceleration is zero. The
third trace shows how the results of the velocity on the displacement of the object (i.e. how far it
has travelled in total) - again it is easy to see how the velocity graph contributes to the displacement,
with the object getting further away while there is a positive velocity then remaining at the same
displacement when the velocity returns to zero.

An informal definition of integration is that it measures the area under the trace of the value being
integrated. Taking another look at the three traces in the diagram should make this more clear. The
second trace (velocity) shows the integral of the first trace (acceleration); you should be able to see
that it is a measure of the total area between the trace and the zero line — e.g. during the second
segment when the acceleration is a constant positive value the velocity trace rises linearly as the area
under the acceleration line increases linearly over time.

Force-Based Physics Engine

Okay, so now we have our mathematical model for calculating the positions of our simulated objects
from the forces acting upon them:

e Resolve all forces on an object into a single force

e Calculate the acceleration caused by that force from Newton’s second law F = ma.
e Integrate the acceleration over time to calculate the velocity.

e Integrate the velocity over time to calculate the position.

The next question to be addressed is how to integrate a function using a computer program.
Integration is a continuous process, but a computer program can only work with discrete pieces of
data. In fact the solution can be found in the informal description of integration as a running total
of the area beneath the graph described earlier, as we shall see in the next section.

Numerical Integration

In this section we will discuss a number of increasingly complex, and increasingly accurate, methods
of integrating a time series of data using numerical integration. They are all based on the idea that
each iteration of the time series can be treated as an extra section of the area under the trace.

Time Series and the Time Step

Before discussing the specific integration methods, we must talk about how time is represented in our
simulated system. As we know, computers deal with discrete numbers and states; if the simulation
runs sufficiently quickly then we see these states as continuous movement. For each frame of the
simulation, we need to calculate the state of each object (i.e. the velocity and position), based on the
state of the object in the previous frame.

The record of a particular state of an object (for example the x coordinate of the object’s position)
is known as a time series. The trace of a graph where the x axis represents time (such as the three
graphs in Figure 1) is a time series. The amount of simulated time that has elapsed between each
step of the simulation is known as the time step. Note the use of the term simulated time — the
time step does not have to be the same as the amount of time it takes to calculate each frame of the
simulation; these numerical integration techniques are used in all areas of computer simulation, not
just in real-time games.

The basic technique is best illustrated by considering a body travelling with constant velocity v
as shown in Figure 2. The displacement s of this body is calculated at each time step, by numerically
integrating the velocity. The displacement at the end of the current time step s,41 is calculated
by taking the displacement at the start of the time step s,, and adding on the extra displacement
achieved by the current velocity v,,.

Spt+1 = Sp + v At

tn th+ \'

Displacement

Sn+1
Sn

\

At Time

Figure 2: Timestep integration of constant velocity

Hence the displacement at each time step is calculated from the previous displacement and pre-
vious velocity. Similarly, the displacement at the next time step will be calculated from the current
displacement and current velocity, and so on. This is therefore an iterative process.

In the stated example, the calculation of the displacement will be accurate if the velocity is a
constant. However we are interested in simulating systems where the velocities are not constant.
This is where numerical integration gets interesting. Because numerical integration is an attempt to
represent a continuous process in a discrete manner, approximations need to be made, which means
that the results become inaccurate. As it is an iterative process the inaccuracies are likely to get
larger over time (as each result is calculated from the previously inaccurate result, and introduces its
own inaccuracy). In the example given, when the velocity of the body is not constant, the assump-
tion that the velocity remains constant throughout a specific time-step is no longer 100% accurate.
Of course, increasing the number of samples (i.e. reducing the time step) should improve the accu-
racy. This is why a physics engine typically runs at a much faster frame-rate than the rest of the game.

We will now describe some algorithms commonly used for numerical integration, and discuss their
appropriateness to games development. The algorithms are:

Explicit Euler Integration

Implicit Euler Integration

Semi-Tmplicit Euler Integration (or Symplectic Euler Integration)

e Verlet Integration

Explicit Euler Integration

Explicit Euler Integration (often referred to as simply Euler Integration) is the direct implementation
of the method already discussed. Explicit Euler Integration uses the first derivative and evaluates it
at the current time.

The following equations are used to calculate the position of a body from its acceleration for each
frame of the simulation:
Un+1 = Un + anAt
Spt+1 = Sp + U AL

Remember that we know the acceleration, as we have calculated it by resolving all the forces on
the body, and dividing the resultant force by the mass of the body, according to Newton’s second law.

In C++ these equations are encoded simply as:

NextVelocity = ThisVelocity + ThisAcceleration * dt;
NextPosition ThisPosition + ThisVelocity * dt;

Explicit Euler

Explicit Euler Integration is the simplest and most intuitive numerical integration technique, but it
also exhibits a tendency toward instability unless very short time steps are used. Consequently it tends
not to be used in physics engines for games as the computational savings gained from the simplicity
of each iteration, are outweighed by the increased frequency of the iterations that are required for
accuracy.

Implicit Euler Integration

Implicit Euler Integration (also referred to as Backward Euler Integration) addresses the approxima-
tion issues inherent in Explicit Euler Integration by using a future state of the system. Implicit Euler
Integration therefore uses the first derivative and evaluates it at the next time step.

The following equations are used to calculate the position of a body from its acceleration for each
frame of the simulation:
Un41 = Un + an+1At

Spt+1 = Sp T UnJrlAt

Of course these equations rely on knowing the future value of the acceleration (i.e. a,y1). While
there are methods for approximating, or predicting, the future value of a time series, these are in
general far too expensive to be appropriate for use in a physics engine for games. Remember that the
physics engine is likely to be updating many many objects per iteration, so any additional expense
in the calculations is repeated per object, multiplying the overall cost many times. Consequently
the Implicit Euler Integration method tends not to be utilised in game simulation, and we will not
consider it further.

Semi-Implicit Euler Integration (or Symplectic Euler Integration)

Semi-Implicit Euler Integration combines the ease of calculation of the Explicit approach with some
of the increased accuracy of the Implicit approach. It is also often referred to as Symplectic Euler
Integration. Semi-Implicit Euler Integration uses the first derivative and evaluates the acceleration at
the current time step, and the velocity at the next time step.

The following equations are used to calculate the position of a body from its acceleration for each
frame of the simulation:
Upg1 = Up + an At

Sp+1 = Sp + ’UnJrlAt

In this case we know the acceleration (it is calculated from resolving the forces acting on the
body, and dividing by the mass), and we use that to calculate the velocity at the subsequent time
step. We then use that ”future” velocity to calculate the position at the next time step. This has the
effect of introducing a stabilising factor, so the iterations are a lot less likely to become too inaccurate.

In C++ these equations are encoded as follows (note that the order of these two lines of code is
very important, as the velocity must be calculated before it is used to calculate the position):

NextVelocity = ThisVelocity + ThisAcceleration * dt;
NextPosition = ThisPosition + NextVelocity * dt;

Semi—Implicit Euler

As Semi-Implicit Euler Integration is very fast to compute, and tends to retain accuracy over many
iterations, this is a very common choice of algorithm for physics engines in games technology. This is
the algorithm which we will utilise at the heart of the physics engine that we are developing in this
tutorial series.

Verlet Integration

Verlet integration does not calculate the velocity directly, but bases its calculations on the last two
positions of the body, and the acceleration. It therefore uses the second derivative and assesses it at
the current time step.

If we take the equations given for Semi-Implicit Euler Integration above, and substitute for v,—;
in the equation for s,,y1, then we get:

Sp+1 = Sn + U, AL + an At?

The velocity is calculated by subtracting the previous position from the current position, and dividing
by the time step:
Sn — Sn—1

At
which gives us the equation used by Verlet Integration to calculate the position of a body from its
acceleration for each frame of the simulation:

Up =

Sn+1 = Sn + (Sn - Sn—l) + anAt2

In C++ these equations are encoded as:

NextPosition = ThisPosition + ThisPosition - LastPosition +
ThisAcceleration *x dt * dt;
LastPosition = ThisPosition;
Verlet

Note that in practice the multiplication of At with itself would not be calculated for every object. It
would be calculated once per frame and the result (i.e. At?) would be multiplied by the acceleration
within the update loop, as this is more efficient.

Verlet integration is similarly efficient to compute as Semi-Implicit Euler Integration. It also has
the advantage of being reversible, whereas the Euler approaches are not (this can be especially useful
for games involving replays). Further to this, when we come to consider collision responses later in
this tutorial series, we will see that there are distinct advantages to using a Verlet integration method,
as we can set the post-collision position directly rather than having to worry about the velocity. One
thing to bear in mind when using Verlet Integration is that it is not self-starting (i.e it needs the state
of the simulated objects from one time step in the past), so care must be taken when setting the initial
conditions of simulated objects.

More Advanced Numerical Integration Methods

Whereas the methods described so far in this section are most suited to game simulation, the appli-
cations of numerical integration are numerous and widespread throughout mathematics, engineering
and science. In applications where performing in real-time is less important, or where fewer agents
are to be simulated at much higher accuracies, there are more complex iterative methods available.
These include the Runge-Kutta method, which divides the time step into a number of sections, and
estimates each sub-time-step in order to arrive at a better estimate of the state at the end of the time
step. Typically a fourth order Runge Kutta algorithm is used (referred to as RK/), which splits each
time step into four subsections. Euler integration is actually a low order Runge Kutta implementation
(i.e. with a single sub-step).

Numerically integrating a set of differential equations is an important part of many areas of sci-
entific research. Most differential equations can’t actually be solved mathematically, however they
can be simulated by using one of these iterative methods to solve them numerically. The time series
produced by the numerical integration can then be analysed further. For those interested, the three-
dimensional time series shown in the figure at the start of this tutorial is generated by numerically
integrating Lorenz’ equations, and is known as a Lorenz attractor.

Damping and Rest

Before moving on to the implementation of the numerical integrator of your force-based physics engine,
there is one more aspect to discuss. In the real world, objects gradually slow down due to friction,
unless they are in a vacuum. Air resistance and friction from any contact surfaces provide a force
acting against the direction of travel of an object. Whereas we could simulate these forces fully, and
include them when resolving the rest of the forces acting on a body, it is more common (and more
efficient) to cheat somewhat.

The observable effect of these frictional forces is to gradually slow down all moving bodies until
they come to a rest. This is usually achieved in a physics engine simply be reducing the velocity by a
constant factor every time step. When the velocity becomes less than a specified threshold, it is set
explicitly to zero, which will have the effect of stopping an object jiggling around unrealistically.

In C++ this is encoded as:

ThisVelocity *= DAMPING_FACTOR;
if (ThisVelocity < MINIMUM_VELOCITY) ThisVelocity = 0.0f;

Damping

Changing the value of the damping factor causes objects to come to a rest more or less quickly. This
can be utilised to simulate such effects as sliding around on ice, or moving underwater. Consequently
the damping factor may not be a constant — it may vary depending on the area of the game world,
or the type of game object, that is being simulated. Changing the value of the minimum velocity
before setting the object to rest is less common, and not really advisable — making the value too
high will result in an abrupt looking halt, and setting it too low will just waste computation time on
imperceptible velocities or contribute to some unwanted shuddering.

Implementation

The aim of this practical session is to implement the heart of your physics engine, in the form of a
numerical integrator. We will construct a set of algorithms which resolve the forces acting on a body,
calculate the acceleration caused by that resultant force, and then iteratively solve the differential
equations governing the motion of the body, in order to calculate its position and velocity at each
frame of the simulation. To demonstrate that the physics update is working, we will launch objects
from the camera position by applying an initial force to them, and simulating their trajectory according
to Newton’s laws.

Tutorial Summary

We have expanded on the concept of a physics engine,and discussed how forces are used to calculate
the motion of bodies. We have discussed how to implement a numerical integration scheme, and
how to use it to calculate the velocity and displacement of an object from its acceleration. We have
implemented this physics simulation in an efficient and well-engineered fashion so that it can be used
by multiple game agents as we progress through the tutorial series. So far we have only considered
linear motion; in the next tutorial we will expand our simulation further to cover angular motion.

